Probability Theory Notes (2023/2024)

Griffin Reimerink

Contents
I Combi o 9
|2 Probability| 2
2.1 Probability spaces| . . . . . . . . 2
2.2 FEvents’ relationsl . . . . . . . ... e e e 3
3Random variables| 3
3.1 Probability mass and density functions|. . . . . . . . . .. L Lo L Lo 4
8.2 Functions of random variables|. . . . . . . . . ... 4
8.3 Expectation] . . . . . . .o 4
B4 Varfance . . . . . . . ... 5
8.5 Classical distributions| . . . . . . . . . . .. 5
4 Random vectors| 6
4.1 Joint and marginal distributions| . . . . . . . .. ... Lo 6
4.2 Conditional distributionl . . . . . . . . . . .. 7
4.3 Transtormation of vectors] . . . . . . . . . . 8
4.4 Covariance and correlation|. . . . . . . . . . . L L 9
[F Moment generating function| 9
[6_Statistics] 10
6.1  Law of large numbers| . . . . . . . .. o 10
6.2 Central imit theoreml . . . . . . . . . . . . . 11
[7__Random walks| 12
B Bihan [distribution 12




1 Combinatorics

Definition Fulling factorial, binomial coeﬁ'icientl

M =mtm (&) = momra = (ans)

When the cardinality of a set is difficult to compute, a bijection can help.

Theorem Inclusion-exclusion formula |

= D lml— D X X+ + D™ DD X nX, N nX |

1<i;<n 1<i1<ia<n 1<it1<ig<...<n

2 Probability

2.1 Probability spaces

Definition Sample space |

A sample space is a set ).
Any element w € € is called an outcome. Any subset A C (2 is called an event.

Definition Probablity space |

A probability space is a triple (2, <7, P):
e () is a sample space
the set of all subsets of Q if €2 is countable
a certain set of subsets of ) if {2 is uncountable
e P is a probability function P : &/ — [0, 1] satisfying:

e o/ is a collection of events:

- PQ)=1
— P(U A4;) = > P(4;) for any pairwise disjoint A1, Ag, As...
i>1 i>1

Theorem |

Let Q = {w1,wa,...,w, and p1,pa,...,pp > 0 with > p; = 1.

For any A C Q define P(A) = > p;. Then P is a probability function on €.
LW, EA

Theorem Properties of probabilities |

P(@)=0
If By, Bs, ..., By, are pairwise disjoint, then P(|J B;) = > P(B;)
P(A°) =1-P(A) i<n i<n

0<P(A) <1 VAedo
P(AuB) =P(A)+P(B) -P(ANB)
if AC B, then P(A) < P(B)

SPHPHPOPE=

Theorem o-sub-additivity |

For any collection of events A;, As, ..., A, we have P({J B;) < > P(B;)

i<n i<n

Theorem Uniform probability of finite sample space |

Let (£2, 47, P) be a probability space with |Q] < oco.
_ 14

If all outcomes w € € have the same probability, then P(A) = Q)




2.2 Events’ relations

Definition Probability of A given B |

P(ANB) |ANB|
P(B) B

P(A | B) =

Theorem Law of total probabilities |

Let B € & with P(B) > 0. Let Ay, Ag, ... be a partition of «/. Then

P(B) = ZP(B | A;) - P(A;)

Theorem Bayes’ formula |

Let B € & with P(B) > 0. Let Ay, Ay, ... be a partition of &/. Then

P(B | Ai) - P(A;)
> (P(B | Ai)P(4;))

ieN

P(Az' | B) =

Definition Independence

e Events A and B are independent if P(A N B) = P(A)P(B)
o Events A, Ay,..., A, are pairwise independent if P(4; N A;) = P(A;)P(A;) Vi#j
e Events A1, Ay, ..., A, are mutually independent if P(A;, N...NA4;, ) =P(4;,) ... -P(4;,)
for any subcollection A;,, A;,, ..., A;,
Mutual independence implies pairwise independence.

3 Random variables

i.i.d stands for "Independent and identically distributed random variables”

Definition Random variable |

Let (Q, <7, P) be a probablity space. A random variable is a function X : Q — R.
The distribution of a random variable X is the function A C R — P(X € A),
where P(X € A) =P({w € Q: z(w) € A}

Definition Cumulative distribution function (cdf)

The cdf of a random variable X is the function Fy : R — [0, 1] given by Fx(z) = P(X < x)

Lemma |

Theorem |

F, is nondecreasing, lim Fx(xz) =0, and lim Fx(z) =1
T——00 T—r00

Definition Discrete and continuous variablesl

A random variable is discrete if it takes finitely or countably many values. (Fx is piecewise constant)
A random variable is continuous if its cdf is continuous.

Definition Identically distributed variables |

X and Y are identically distributed if they have the same distribution.




3.1 Probability mass and density functions

Definition Probability mass function (pmf)

The pmf of a discrete random variable X is given by fx(z) =P(X = x)

Definition Probability density function (pdf)

The pdf of a continuous random variable X is a function fx : R — [0, 00) that satisfies

Fz(l‘):/j: fx(y)dy VzeR

Definition Absolute continuz’tyl

A random variable is absolutely continuous if it is continuous and has a probability density function.

Notation |

X has pmf = fx if X is discrete

X ~ Fx means X has cdf = Fx X ~ fx means . . .
X has pdf = fx if X is continuous

3.2 Functions of random variables

Theorem |

1. If Y = g(X) and g is strictly increasing, then Fy (y) = Fx (g9~ '(y))
2. If Y = g(X), g is strictly decreasing and X is continuous, then Fy (y) =1 — Fx (g '(y))

Lemma |

Assume X is discrete. Then, Y is also discrete and fy (y) = >,  fu(z).
If g is injective, then fy (y) = fx (g7 (v)) €9~ (y)

Theorem |

Assume X has pdf fx and Y = ¢g(X) with g differentiable and strictly increasing or strictly decreasing.

Then,
() = Fx (g~ () - ;Lg‘l(y)'

3.3 Expectation

Definition Expected value |

Let X be a random variable.
The expected value (or mean or expectation) of X is:

E(X) = {Zr T fa(x) if X is discrete

ffooo x - fo(z)dx if X is absolutely continuous

Theorem Linearity of expectation |

Let X1, X5,..., X,, be random variables. Let a1, as,...,a, € R.
Then E[ale + CLQXQ +...+ aan] = CL]_IEXl + (LQ]EXQ +...+ anEXn

Theorem |

Let X be a discrete random variable and g : R = R. Then E(g(X)) =3, g(z) fx (x).




Theorem Properties of expected value of functions |

Let X,Y : © — R be random variables, a,b,c € R
and g1,g2 : R =R st. E(¢91(X)),E(g2(X)),E(g2(Y)) are defined. Then
Linearity:
L. Elagi(X) 4 bg2(Y) + ¢] = aE[g1(X)] + bE[g2(Y)] + ¢
Monotonicity:
2. If g1 > 0, then E[g; (X)] >0
3. If g1 > g2, then E[g1(X)] > E[g2(X)]
4. Ifa < g3 <b, thena <E[g;(X)] <b

Theorem |

1. If X is a discrete random variable taking values in {0, 1, ...}, then E(X) = Z(l — Fx(n))

2. If X is a continuous nonnegative random variable, then E(X) = /(1 — Fx(n))dx
0
3.4 Variance
Definition Variance and standard dem’atz’onl
n-th moment: E(X)" Variance: Var(X)=E((X — E(X))?) = E(X?) — (E(X))?
n-th central moment: E(X — E(X))"” Standard deviation: o = /Var(X)
Theorem |
Var(aX +b) = a® Var X
3.5 Classical distributions
Definition Classical discrete distributions |
1
Discrete uniform distribution: X ~ Unif(a,b) if f,(z) = b—atl a,beZ,a<b
—a
Bernoulli distribution: X ~ Ber(p) if fo(1) =pand f(0)=1—-p p € [0,1]
Binomial distribution: X ~ Bin(n,p) if fiz(z) = " p*(l—p) " x=0,1,...,n
%
Geometric distribution: X ~ Geo(p) if fo(x) = (1 —p)®1p x=1,2,...
Al‘
Poisson distribution: X ~Poi(N\) if fo(x) = —|e*)‘ A>0,2=0,1,2,...
%

For the binomial distribution, we perform n Bernoulli trials with probability p of success, where X is
the number of successes. For the geometric distribution, we perform Bernoulli trials with probability p
of success until the first success is obtained, where X is the number of trials.

Ezpectation and variance of classical discrete distributions |

Discrete uniform distribution E(X) =t Var(X)= (b_aﬁf—l
Bernoulli distribution E(X)=p Var(X) =p(1 —p)
Binomial distribution E(X)=np Var(X)=np(l—-p)
Geometric distribution E(X)=1 = Var(X) =32
Poisson distribution E(X)=A Var(X) = A




Theorem Poisson limit theorem |

Assume (p,)n>1 is a sequence such that p, € [0,1] for each n and lim n-p, = A > 0.
- n—oo
Then for each k > 1,

e
V2mo

We call .47(0,1) the standard normal distribution.

k
g n k _ n—k __ L -2
i (Dea-mr= e
—_——
fx (k) for X~Bin(n,p,) fx (k) for X~Poi(X)
Definition Gamma functz’onl
F(a)/ to= et dt
0
Properties of the gamma functionl
e I'(a+ 1) = al'(a) for any a > 0.
e I'(n) = (n — 1)! for any positive integer n.
Definition Classical continuous distributions |
— if b
Uniform distribution: X ~ ContUnif(a, b) if fx(z) = = if @ € (0, ) a<b
0 otherwise.
Ae A if 2 > 0
Exponential distribution: X ~ Exp()) if fx(z) = ¢ ' ;v A>0
0 otherwise.
e le P if o > 0
Gamma distribution: X ~ Gammal(a, B) if fx(z) = L@® -e o o,8>0
0 otherwise.
1 o—p)?
Normal distribution: X ~ AN (p,0?) if fx(z)= -5 peER >0

FEzxpectation and variance of classical continuous distributions |

Uniform distribution E(X)=%2 Var(X)= (b— “)2
Exponential distribution E(X) = % Var(X) = %
Gamma distribution E(X) =3 Var(X) = 4
Normal distribution E(X)=p Var(X) = o2

Theorem |

If X ~ A (u,0%) and Y = aX + b with a # 0, then Y ~ A4 (ap + b, a®c?)
If X ~ A (u,0%) and Z = 224 ~ #(0,1)

4 Random vectors

Definition Random vectorl

A random variable is a 1-dimensional random vector.
The distribution of a random vector is the function A — P((X7, X, ..

LX) €A

Let n € N. An n-dimensional random vector is a function from a sample space €2 into R”.

4.1 Joint and marginal distributions

Definition Joint cumulative distribution functionl

The joint cdf of (X1,...,X,)is Fx,,  x,(@1,...,2n) =P(X1 < 21,..., X, < 2p)




Definition Discrete random vectors |

A random vector (Xi,...,X,) is discrete if it takes countably many values.
The joint pmf of (X1,...,Xp) s fx,...x,(@1,...,2n) =P(X1 =21,..., Xpy = 2p)

Definition Continuous random vectors |

A random vector (X1,...,X,,) is continuous if there exists a function fx, . x, : R™ — [0, 00) such that

P((Xl,XQ,...,Xn)EA)Z/-“/ th___,Xn(ZIJl,...,l‘n)dil?l...dl‘n
A

This function is the joint pdf of (Xi,...,X,).

Definition Marginals |

Let (X1,...,X,) be a random vector with joint pdf fx, . x, .
The pmf’s fx,,..., fx, of the (univariate) random variables X7, ..., X,, are called the marginal pmf’s.
We similarly define marginal pdf’s for continuous random vectors.

Construction of marginals from a joint pmfl

Ix(@) = fxy(z,y) K@) =) fxy(z,y)

Construction of marginals from a joint pdf |

fx@ = [ S o)y )= / " o)l

Theorem Expectation of random vectors |

Let g : R* — R.

]E[g($1, o ,CL‘n)] _ {Zwl fzw" g(dfl, 500 ,xn)th“_,Xn (LEl, 800 ,l‘n) (Discrete)

ffooo OOOO g(z1, ... xn) fx,,. . x,(T1,...,2n)dz1 ... dz,  (Continuous)

Theorem |

1. If X and Y are random variables and a,b € R, then E[aX + bY] = aE[X] + bE[Y]
2. If P(X >Y) =1, then E(X) > E(Y).

4.2 Conditional distribution
Definition Conditional pmf |

Let (X,Y") be a discrete random vector with joint pmf fx y and marginals fx and fy.
The conditional pmf of X given Y is the function

fxiy(@ly) =P(X =z |Y =y)=

defined for all 2 and for all y such that fy(y) > 0.

Definition Conditional pdf |

Let (X,Y) be a continuous random vector with joint density fx y(z,y). The conditional probability
density function of X given Y is

_ fX,Y(UU,?/)

defined for all z and for all y such that fy (y) > 0.




Definition Independent random variables |

Random variables X1, ..., X, (defined on the same probability space) are independent if

P(X; € Ay,...,Xn€A,)=P(X;€4)..P(X, € A,) forall 4;,...A4, CR.

Lemma |

Random variables X1, ..., X, are independent if and only if

fxy X (@1, mn) = fxy (1) - fx, (20)

Lemma |

Assume that there exist non-negative functions g, h such that we can write fx y(z,y) = g(z) - h(y).
Then X and Y are independent and

e o
R P TR S OFT

Definition Conditional expectation and variancel

Let X,Y be random variables and E be an event with P(E) > 0.

E[X1g]

EIX | B] = 5 g

Var[X | E] = E[X? | E] — (E[X | E]?)

Theorem |

If X and Y are independent, then for any g, h we have

E(g(X)h(Y)) = E(¢(X))E(h(Y)) E(XY)=EB(X)E(Y) Var(X +Y)= Var(X)+ Var(¥)

4.3 Transformation of vectors

Theorem |

Assume X, Y are independent. Let U = ¢1(X) and V = ¢o(Y) with ¢g1,92 : R > R
Then U and V are independent.

Lemma |

If (X1, Xs) is discrete and (Y7,Ys) = g(X1, X2), then fyv, v,(y1,%2) = > fxi x, (21, 22).
If g is injective, then fy (y) = fx (971 (v)) (z1,22)€97 1 (y1,y2)

Theorem |

Let (X7, X2) be a continuous random vector and let g : D — R injective and differentiable, where
D = {(.’El,xg) €R2 :le,XZ(LL'l,%Q)?éO} R:g(D> CR2.

If h =g ! and (Y1,Y2) = g(X1, X2), then

if (yl,yg) €R

thYz (ylv yQ) =
0 otherwise

This theorem can be expanded to higher dimensions.

Definition Convolution

The distribution of X + Y is called the convolution of (the distributions of) X and Y.




Theorem Convolution formulal

Suppose that X and Y are independent random variables.
1. If X and Y are discrete, then Z = X + Y is discrete and its pmf is

fxiv(2) = Z fx(z)fy(z — )
2. If X and Y are continuous, then Z = X + Y is continuous and its pdf is

fev@) = [ ISy e -0y

4.4 Covariance and correlation

Definition Covariance and correlationl

Let X,Y be random variables with E[X] = ux and E[Y] = uy.
e Covariance between X and Y: Cov(X,Y) =E[(X — pux)(Y — uy)]
Cov(X,Y)

e Correlation between X and Y: pxy =
OxX0y

If Cov(X,Y) =0 then X,Y are uncorrelated.

Lemma |

For any random variable X, P(X = 0) = 1 if and only if E[X?] = 0.

Theorem Properties of covariance |

1. Cov(X,Y) = Cov(Y, X)

2. Cov(X, X) = Var(X)

Cov(X,Y) =E[XY] - E[X]|E[Y]

If X,Y are independent, they are uncorrelated. (the converse is not true!)

Cov(aX +bY,Z) =aCov(X,Z)+bCov(Y, 2)

If either of X or Y is constant, then Cov(X,Y) = 0.

|Cov(X,Y)| <oxoy (and pxy € [—1,1])

Assume oxoy > 0. Then,

Cov(X,Y) =oxoy (and pxy = 1) if and only if X = aY + b for some a > 0,b € R
Cov(X,Y) = —oxoy (and pxy = —1) if and only if X = aY + b for some a < 0,b € R

£ S\ 2 Cal (S (Y

Theorem |

e Cov ( Z aiXi, Z bj}/J> = Z Z aibj COV(XZ‘,Y;‘)

i<m i<n i<mj<n

e Var (Z Xi> =>X)+2 > Cov(X;,X;)
i<n i<n i<i<j<n

o If X;,...,X, are independent, then Var <Z Xi> = > Var(X;)

i<n i<n

5 Moment generating function

Definition Moment generating functionl

The mgf of a random variable is the function Mx (t) = E[e

tX] = Yo erfx(z) if X is discrete
25 etafx(z)dx if X is continuous




Theorem |

E(X™) = ()

t=0

Theorem |

MaX+b(t) = ethX (at)

Theorem |

If X,Y are such that Mx (t) = My (t) for all ¢ in some neighborhood of 0, then Fx = Fy

Theorem |

If X,Y are independent, then Mx vy (t) = Mx (t)My (t) for all T > 0

Theorem |

Let X ~ A (ux0%),Y ~ A (puyo?) be independent. Let a,b,c € R.
Then aX +bY + ¢~ A (apx + buy + ¢,a’0? + b*03

Definition Joint moment generating function |

The joint mgf of a random vector X1, ..., X, is the function My, x, (t1,...,t,) = E(etXat+tn X"

6 Statistics

Definition Random sample, parameter, statisticl

A random sample of size n is simply a sequence X1, ..., X,, of independent random variables, all with
the same pdf or pmf f(x). We thus have fx, . x,(z1,...,2n) = [] f(z:)
i<n

A parameter is a constant that defines the pdf/pmf.
A statistic is a function of a random sample, Y = T(X1,...,X,,),T:R"* - R

Definition Sample mean and variance |

= Xi+...+X 1 —
L B D T

n n—1

Lemma |

" on-—1 n—1"
i<n
Theorem |
Let X3,..., X, be independent and identically distributed with mean p and variance o2, Then,
1. E(X,) =u
2. Var(X,) = %
E(S;) = o?

6.1 Law of large numbers

Definition Convergence in probabilityl

A sequence of r.v. X7, Xs,... converges in probability to ¢ € R (notation: X, nﬁTo% c) if

Ve >0 li_>m P(|X, —¢c|>¢)=0

10



Definition Consistent and unbiased estimators |

Let Xi,...,X,, be a random sample from a pmf/pdf f(z) with parameter 6.

Assume Y, is a statistic associated to X1,...,X,,.

We say Y, is an unbiased estimator for § if E(Y) =6

We say Y, is a consistent estimator for 0 if Y,, converges to 6 in probability as n — oo

Theorem Weak law of large numbers |

Let Xi,Xo,... be independent and identically distributed random variables with E(X;) = p and
Var(X;) = 02 < co. Then X, is a consistent estimator for y.

Theorem Markov inequality |

E[Y]

Let a > 0 and Y be any non-negative random variable. Then, P(Y > a) <

Theorem Chebyschev’s inequalityl

< Var(X)

- 2

If X is any random variable and a > 0 then P(|X — E[X]| > a)
a

6.2 Central limit theorem

Definition Convergence in distributionl

A sequence of r.v. X7, Xs,... converges in distribution to X (notation: X, TTTT) X) if

lim Fx, (z) = Fx(x) for every € R at which Fx is continuous
n—oo

Lemma |
n— o0 n— oo

If X continuous and X, T X, then P(X,, =2) —— 0 Vz €R

Theorem |
n—oo

If X continuous and X, '(;)—% X, then for every interval I C R, lim P(X,, € I) =P(X € 1)

n—oo

Theorem Central limit theorem |

Let X1, Xo,... ii.d. with mean p and variance o2 (both finite). Then,

X, -
- i(%)o—o» Z where Z ~ .4(0,1).
o

Vvn

Theorem |

Assume that X1, Xo,... and X are such that lim Mx, (t) = Mx(t) for all ¢ in a neighborhood of 0.
n— oo

n— oo

Then X,, —— X.
(d)

11



7 Random walks

Definition Random walk |

Let X; denote the step a particle makes at time t.
+1 with probability p

Then X1, X, ... are i.i.d. with . .
—1 with probability 1 —p

t
The position at time ¢ will be Sy = > X,. Ifp= %, then we have a symmetric random walk.
s=1

Ezpectation and variance of random walks |

EX;,=2p—1 Var X; = 4p(1 — p) ES; =t(2p—1) Var S; =t - 4p(1 — p)

Theorem |

1 ifp=3
P(The random walk will revisit the origin) =P(3t > 0: 5, =0) =< 2(1—p) ifp>1
2p if p< %

Definition Gambler’s ruin

The gambler’s ruin is similar to a random walk,
but the gambler starts at ¢€ and ends at 0€ (®) or a target N€ (©)

Lemma |

In the gambler’s ruin, the probability that the gambler keeps playing indefinitely,
without ever reaching 0€ or N€, equals zero.

Theorem |

if p= %
0 otherwise

1
P(the walker visits the origin infinitely many times) = {

8 Bivariate normal distribution

Definition Bivariate normal distributionl

A random vector (X,Y) is said to follow a bivariate normal distribution A4 (ux, py,0%, 0%, p)
with parameters ux € R,uY € R,0% > 0,02 >0 and p € (—1,1) if

2 2
1 1 T — pix Y — py T—pxy—py
fxy(z,y) = exp § — ( )+<— — G K Y
xy (@) 2noxoy/1 — p? 2(1—p?) ox oy p ox oy

Lemma Linear combination |

If Zy ~ A4 (0,1) and Zy ~ A are independent, and U = 0121 + 1,V = poaZy + /1 — p?02Za + pio,
then (Ua V) ~ JV(HMH%U%?U%ap)

Theorem |

If (X,Y) N'/V(;UXHUY7U§(’U%’7p)ﬂ then X ~AN(px,0x) Y ~AH(uy,0v) pxy=p

Corollary |

If (X,Y) ~ A (ux,py,0%, 0%, p), then

aX +bY ~ N (apx + buy,a’c% + b20% + 2abpoxoy)

12
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