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1 Combinatorics

Definition Falling factorial, binomial coefficient

(n)k =
n!

(n− k)!

(
n

k

)
=

n!

(n− k)! · k!
=

(
n

n− k

)

When the cardinality of a set is difficult to compute, a bijection can help.

Theorem Inclusion-exclusion formula∣∣∣∣∣
n⋃

i=1

Xi

∣∣∣∣∣ = ∑
1≤i1≤n

|xi| −
∑

1≤i1<i2≤n

|Xi1 ∩Xi2 |+ . . .+ (−1)n+1
∑

1≤i1<i2<...≤n

|Xi1 ∩Xi2 ∩ . . . ∩Xin |

2 Probability

2.1 Probability spaces

Definition Sample space

A sample space is a set Ω.
Any element ω ∈ Ω is called an outcome. Any subset A ⊂ Ω is called an event.

Definition Probablity space

A probability space is a triple (Ω,A ,P):
• Ω is a sample space

• A is a collection of events:

{
the set of all subsets of Ω if Ω is countable

a certain set of subsets of Ω if Ω is uncountable

• P is a probability function P : A → [0, 1] satisfying:
– P (Ω) = 1
– P(

⋃
i≥1

Ai) =
∑
i≥1

P(Ai) for any pairwise disjoint A1, A2, A3...

Theorem

Let Ω = {ω1, ω2, . . . , ωn and p1, p2, . . . , pn ≥ 0 with
∑

pi = 1.
For any A ⊂ Ω define P(A) =

∑
i:ωi∈A

pi. Then P is a probability function on Ω.

Theorem Properties of probabilities

1. P(∅) = 0
2. If B1, B2, . . . , Bn are pairwise disjoint, then P(

⋃
i≤n

Bi) =
∑
i≤n

P(Bi)
3. P(Ac) = 1− P(A)
4. 0 ≤ P(A) ≤ 1 ∀A ∈ A
5. P(A ∪B) = P(A) + P(B)− P(A ∩B)
6. if A ⊂ B, then P (A) ≤ P (B)

Theorem σ-sub-additivity

For any collection of events A1, A2, . . . , An, we have P(
⋃
i≤n

Bi) ≤
∑
i≤n

P(Bi)

Theorem Uniform probability of finite sample space

Let (Ω,A ,P) be a probability space with |Ω| < ∞.

If all outcomes ω ∈ Ω have the same probability, then P(A) =
|A|
|Ω|
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2.2 Events’ relations

Definition Probability of A given B

P(A | B) =
P(A ∩B)

P(B)
=

|A ∩B|
|B|

Theorem Law of total probabilities

Let B ∈ A with P(B) > 0. Let A1, A2, . . . be a partition of A . Then

P(B) =
∑
i∈N

P(B | Ai) · P(Ai)

Theorem Bayes’ formula

Let B ∈ A with P(B) > 0. Let A1, A2, . . . be a partition of A . Then

P(Ai | B) =
P(B | Ai) · P(Ai)∑

i∈N
(P(B | Ai)P(Ai))

Definition Independence

• Events A and B are independent if P(A ∩B) = P(A)P(B)
• Events A1, A2, . . . , An are pairwise independent if P(Ai ∩Aj) = P(Ai)P(Aj) ∀i ̸= j
• Events A1, A2, . . . , An are mutually independent if P(Ai1 ∩ . . . ∩Aik) = P(Ai1) · . . . · P(Aik)
for any subcollection Ai1 , Ai2 , . . . , Aik

Mutual independence implies pairwise independence.

3 Random variables

i.i.d stands for ”Independent and identically distributed random variables”

Definition Random variable

Let (Ω,A ,P) be a probablity space. A random variable is a function X : Ω → R.
The distribution of a random variable X is the function A ⊂ R → P(X ∈ A),
where P(X ∈ A) = P({ω ∈ Ω : x(ω) ∈ A}

Definition Cumulative distribution function (cdf)

The cdf of a random variable X is the function FX : R → [0, 1] given by FX(x) = P(X ≤ x)

Lemma

P(X = x) = Fx(x)− lim
y↗x

FX(y)

Theorem

Fx is nondecreasing, lim
x→−∞

FX(x) = 0, and lim
x→∞

FX(x) = 1

Definition Discrete and continuous variables

A random variable is discrete if it takes finitely or countably many values. (FX is piecewise constant)
A random variable is continuous if its cdf is continuous.

Definition Identically distributed variables

X and Y are identically distributed if they have the same distribution.
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3.1 Probability mass and density functions

Definition Probability mass function (pmf)

The pmf of a discrete random variable X is given by fX(x) = P(X = x)

Definition Probability density function (pdf)

The pdf of a continuous random variable X is a function fX : R → [0,∞) that satisfies

Fx(x) =

ˆ x

−∞
fX(y) dy ∀x ∈ R

Definition Absolute continuity

A random variable is absolutely continuous if it is continuous and has a probability density function.

Notation

X ∼ FX means X has cdf = FX X ∼ fX means

{
X has pmf = fX if X is discrete

X has pdf = fX if X is continuous

3.2 Functions of random variables

Theorem

1. If Y = g(X) and g is strictly increasing, then FY (y) = FX(g−1(y))
2. If Y = g(X), g is strictly decreasing and X is continuous, then FY (y) = 1− FX(g−1(y))

Lemma

Assume X is discrete. Then, Y is also discrete and fY (y) =
∑

x∈g−1(y)

fx(x).

If g is injective, then fY (y) = fX(g−1(y))

Theorem

Assume X has pdf fX and Y = g(X) with g differentiable and strictly increasing or strictly decreasing.
Then,

fY (y) = fX(g−1(y)) ·
∣∣∣∣ ddy g−1(y)

∣∣∣∣
3.3 Expectation

Definition Expected value

Let X be a random variable.
The expected value (or mean or expectation) of X is:

E(X) =

{∑
x x · fx(x) if X is discrete´∞

−∞ x · fx(x) dx if X is absolutely continuous

Theorem Linearity of expectation

Let X1, X2, . . . , Xn be random variables. Let a1, a2, . . . , an ∈ R.
Then E[a1X1 + a2X2 + . . .+ anXn] = a1EX1 + a2EX2 + . . .+ anEXn

Theorem

Let X be a discrete random variable and g : R → R. Then E(g(X)) =
∑

x g(x)fX(x).
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Theorem Properties of expected value of functions

Let X,Y : Ω → R be random variables, a, b, c ∈ R
and g1, g2 : R → R s.t. E(g1(X)),E(g2(X)),E(g2(Y )) are defined. Then
Linearity:

1. E[ag1(X) + bg2(Y ) + c] = aE[g1(X)] + bE[g2(Y )] + c
.Monotonicity:

2. If g1 ≥ 0, then E[g1(X)] ≥ 0
3. If g1 ≥ g2, then E[g1(X)] ≥ E[g2(X)]
4. If a ≤ g1 ≤ b, then a ≤ E[g1(X)] ≤ b

Theorem

1. If X is a discrete random variable taking values in {0, 1, . . .}, then E(X) =

∞∑
n=0

(1− FX(n))

2. If X is a continuous nonnegative random variable, then E(X) =

∞̂

0

(1− FX(n)) dx

3.4 Variance

Definition Variance and standard deviation

n-th moment: E(X)n Variance: Var(X) = E((X − E(X))2) = E(X2)− (E(X))2

n-th central moment: E(X − E(X))n Standard deviation: σ =
√
Var(X)

Theorem

Var(aX + b) = a2 VarX

3.5 Classical distributions

Definition Classical discrete distributions

Discrete uniform distribution: X ∼ Unif(a, b) if fx(x) =
1

b− a+ 1
a, b ∈ Z, a < b

Bernoulli distribution: X ∼ Ber(p) if fx(1) = p and fx(0) = 1− p p ∈ [0, 1]

Binomial distribution: X ∼ Bin(n, p) if fx(x) =

(
n

x

)
px(1− p)n−x x = 0, 1, . . . , n

Geometric distribution: X ∼ Geo(p) if fx(x) = (1− p)x−1p x = 1, 2, . . .

Poisson distribution: X ∼ Poi(λ) if fx(x) =
λx

x!
e−λ λ > 0, x = 0, 1, 2, . . .

For the binomial distribution, we perform n Bernoulli trials with probability p of success, where X is
the number of successes. For the geometric distribution, we perform Bernoulli trials with probability p
of success until the first success is obtained, where X is the number of trials.

Expectation and variance of classical discrete distributions

Discrete uniform distribution E(X) = a+b
2 Var(X) = (b−a+1)2−1

12
Bernoulli distribution E(X) = p Var(X) = p(1− p)
Binomial distribution E(X) = np Var(X) = np(1− p)

Geometric distribution E(X) = 1
p Var(X) = 1−p

p2

Poisson distribution E(X) = λ Var(X) = λ
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Theorem Poisson limit theorem

Assume (pn)n≥1 is a sequence such that pn ∈ [0, 1] for each n and lim
n→∞

n · pn = λ > 0.

Then for each k ≥ 1,

lim
n→∞

(
n

k

)
(pn)

k(1− pn)
n−k︸ ︷︷ ︸

fX(k) for X∼Bin(n,pn)

=
λk

k!
e−λ︸ ︷︷ ︸

fX(k) for X∼Poi(λ)

Definition Gamma function

Γ(a)

ˆ ∞

0

ta−1 · e−t dt

Properties of the gamma function

• Γ(a+ 1) = aΓ(a) for any a > 0.
• Γ(n) = (n− 1)! for any positive integer n.

Definition Classical continuous distributions

Uniform distribution: X ∼ ContUnif(a, b) if fX(x) =

{
1

b−a if x ∈ (a, b)

0 otherwise.
a < b

Exponential distribution: X ∼ Exp(λ) if fX(x) =

{
λe−λx if x > 0

0 otherwise.
λ > 0

Gamma distribution: X ∼ Gamma(α, β) if fX(x) =

{
βα

Γ(α)x
α−1e−βx if x > 0

0 otherwise.
α, β > 0

Normal distribution: X ∼ N (µ, σ2) if fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 µ ∈ R, σ > 0

We call N (0, 1) the standard normal distribution.

Expectation and variance of classical continuous distributions

Uniform distribution E(X) = b+a
2 Var(X) = (b−a)2

12
Exponential distribution E(X) = 1

λ Var(X) = 1
λ2

Gamma distribution E(X) = α
β Var(X) = α

β2

Normal distribution E(X) = µ Var(X) = σ2

Theorem

If X ∼ N (µ, σ2) and Y = aX + b with a ̸= 0, then Y ∼ N (aµ+ b, a2σ2)
If X ∼ N (µ, σ2) and Z = X−µ

σ ∼ N (0, 1)

4 Random vectors

Definition Random vector

Let n ∈ N. An n-dimensional random vector is a function from a sample space Ω into Rn.
A random variable is a 1-dimensional random vector.
The distribution of a random vector is the function A 7→ P((X1, X2, . . . , Xn) ∈ A)

4.1 Joint and marginal distributions

Definition Joint cumulative distribution function

The joint cdf of (X1, . . . , Xn) is FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)
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Definition Discrete random vectors

A random vector (X1, . . . , Xn) is discrete if it takes countably many values.
The joint pmf of (X1, . . . , Xn) is fX1,...,Xn

(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn)

Definition Continuous random vectors

A random vector (X1, . . . , Xn) is continuous if there exists a function fX1,...,Xn
: Rn → [0,∞) such that

P((X1, X2, . . . , Xn) ∈ A) =

ˆ
· · ·
ˆ
A

fX1,...,Xn(x1, . . . , xn) dx1 . . . dxn

This function is the joint pdf of (X1, . . . , Xn).

Definition Marginals

Let (X1, . . . , Xn) be a random vector with joint pdf fX1,...,Xn .
The pmf’s fX1 , . . . , fXn of the (univariate) random variables X1, . . . , Xn are called the marginal pmf’s.
We similarly define marginal pdf’s for continuous random vectors.

Construction of marginals from a joint pmf

fX(x) =
∑
y

fX,Y (x, y) fY (y) =
∑
x

fX,Y (x, y)

Construction of marginals from a joint pdf

fX(x) =

ˆ ∞

−∞
fX,Y (x, y) dy fY (y) =

ˆ ∞

−∞
fX,Y (x, y) dx

Theorem Expectation of random vectors

Let g : Rn → R.

E[g(x1, . . . , xn)] =

{∑
x1

· · ·
∑

xn
g(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn) (Discrete)´∞

−∞ · · ·
´∞
−∞ g(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn) dx1 . . . dxn (Continuous)

Theorem

1. If X and Y are random variables and a, b ∈ R, then E[aX + bY ] = aE[X] + bE[Y ]
2. If P(X ≥ Y ) = 1, then E(X) ≥ E(Y ).

4.2 Conditional distribution

Definition Conditional pmf

Let (X,Y ) be a discrete random vector with joint pmf fX,Y and marginals fX and fY .
The conditional pmf of X given Y is the function

fX|Y (x | y) = P(X = x | Y = y) =
P(X = x, Y = y)

P(Y = y)

defined for all x and for all y such that fY (y) > 0.

Definition Conditional pdf

Let (X,Y ) be a continuous random vector with joint density fX,Y (x, y). The conditional probability
density function of X given Y is

fX|Y (x | y) = fX,Y (x, y)

fY (y)

defined for all x and for all y such that fY (y) > 0.
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Definition Independent random variables

Random variables X1, . . . , Xn (defined on the same probability space) are independent if

P(X1 ∈ A1, . . . , Xn ∈ An) = P (X1 ∈ A1) . . .P(Xn ∈ An) for all A1, . . . An ⊂ R.

Lemma

Random variables X1, . . . , Xn are independent if and only if

fX1,...,Xn(x1, . . . , xn) = fX1(x1) . . . fXn(xn)

Lemma

Assume that there exist non-negative functions g, h such that we can write fX,Y (x, y) = g(x) · h(y).
Then X and Y are independent and

fX(x) =
g(x)´∞

−∞ g(s) ds
fY (y) =

h(y)´∞
−∞ h(t) dt

Definition Conditional expectation and variance

Let X,Y be random variables and E be an event with P(E) > 0.

E[X | E] =
E[X1E ]

P(E)
Var[X | E] = E[X2 | E]− (E[X | E]2)

Theorem

If X and Y are independent, then for any g, h we have

E(g(X)h(Y )) = E(g(X))E(h(Y )) E(XY ) = E(X)E(Y ) Var(X + Y ) = Var(X) + Var(Y )

4.3 Transformation of vectors

Theorem

Assume X,Y are independent. Let U = g1(X) and V = g2(Y ) with g1, g2 : R → R
Then U and V are independent.

Lemma

If (X1, X2) is discrete and (Y1, Y2) = g(X1, X2), then fY1,Y2
(y1, y2) =

∑
(x1,x2)∈g−1(y1,y2)

fX1,X2
(x1, x2).

If g is injective, then fY (y) = fX(g−1(y))

Theorem

Let (X1, X2) be a continuous random vector and let g : D → R injective and differentiable, where

D := {(x1, x2) ∈ R2 : fX1,X2
(x1, x2) ̸= 0} R = g(D) ⊂ R2.

If h = g−1 and (Y1, Y2) = g(X1, X2), then

fY1,Y2
(y1, y2) =

fX1,X2
(g−1(y1, y2)) ·

∣∣∣∣∂(h1, h2)

∂(y1, y2)

∣∣∣∣ if (y1, y2) ∈ R

0 otherwise

This theorem can be expanded to higher dimensions.

Definition Convolution

The distribution of X + Y is called the convolution of (the distributions of) X and Y .
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Theorem Convolution formula

Suppose that X and Y are independent random variables.
1. If X and Y are discrete, then Z = X + Y is discrete and its pmf is

fX+Y (z) =
∑
x

fX(x)fy(z − x)

2. If X and Y are continuous, then Z = X + Y is continuous and its pdf is

fX+Y (z) =

ˆ ∞

−∞
fX(x)fy(z − x) dx

4.4 Covariance and correlation

Definition Covariance and correlation

Let X,Y be random variables with E[X] = µX and E[Y ] = µY .
• Covariance between X and Y : Cov(X,Y ) = E[(X − µX)(Y − µY )]

• Correlation between X and Y : ρX,Y =
Cov(X,Y )

σXσY
If Cov(X,Y ) = 0 then X,Y are uncorrelated.

Lemma

For any random variable X, P(X = 0) = 1 if and only if E[X2] = 0.

Theorem Properties of covariance

1. Cov(X,Y ) = Cov(Y,X)
2. Cov(X,X) = Var(X)
3. Cov(X,Y ) = E[XY ]− E[X]E[Y ]
4. If X,Y are independent, they are uncorrelated. (the converse is not true!)
5. Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y, Z)
6. If either of X or Y is constant, then Cov(X,Y ) = 0.
7. |Cov(X,Y )| ≤ σXσY (and ρX,Y ∈ [−1, 1])
8. Assume σXσY > 0. Then,

Cov(X,Y ) = σXσY (and ρX,Y = 1) if and only if X = aY + b for some a > 0, b ∈ R
Cov(X,Y ) = −σXσY (and ρX,Y = −1) if and only if X = aY + b for some a < 0, b ∈ R

Theorem

• Cov

( ∑
i≤m

aiXi,
∑
j≤n

bjYj

)
=
∑
i≤m

∑
j≤n

aibj Cov(Xi, Yj)

• Var

(∑
i≤n

Xi

)
=
∑
i≤n

(Xi) + 2
∑

i≤i<j≤n

Cov(Xi, Xj)

• If X1, . . . , Xn are independent, then Var

(∑
i≤n

Xi

)
=
∑
i≤n

Var(Xi)

5 Moment generating function

Definition Moment generating function

The mgf of a random variable is the function MX(t) = E[etX ] =

{∑
x e

txfX(x) if X is discrete´∞
−∞ etxfX(x) dx if X is continuous

9



Theorem

E(Xn) =
dn

dtn
MX(t)

∣∣∣∣
t=0

Theorem

MaX+b(t) = ebtMX(at)

Theorem

If X,Y are such that MX(t) = MY (t) for all t in some neighborhood of 0, then FX = FY

Theorem

If X,Y are independent, then MX+Y (t) = MX(t)MY (t) for all T ≥ 0

Theorem

Let X ∼ N (µXσ2
X), Y ∼ N (µY σ

2
Y ) be independent. Let a, b, c ∈ R.

Then aX + bY + c ∼ N (aµX + bµY + c, a2σ2
1 + b2σ2

2

Definition Joint moment generating function

The joint mgf of a random vector X1, . . . , Xn is the function MX1,...,Xn(t1, . . . , tn) = E(et1X1+...+tnX
n

)

6 Statistics

Definition Random sample, parameter, statistic

A random sample of size n is simply a sequence X1, . . . , Xn of independent random variables, all with
the same pdf or pmf f(x). We thus have fX1,...,Xn

(x1, . . . , xn) =
∏
i≤n

f(xi)

A parameter is a constant that defines the pdf/pmf.
A statistic is a function of a random sample, Y = T (X1, . . . , Xn), T : Rn → R

Definition Sample mean and variance

Xn =
X1 + . . .+Xn

n
S2
n =

1

n− 1

∑
i≤n

(Xi −Xn)
2

Lemma

S2
n =

1

n− 1

∑
i≤n

X2
i − n

n− 1
X

2

n

Theorem

Let X1, . . . , Xn be independent and identically distributed with mean µ and variance σ2. Then,
1. E(Xn) = µ
2. Var(Xn) =

VarX1

n
3. E(S2

n) = σ2

6.1 Law of large numbers

Definition Convergence in probability

A sequence of r.v. X1, X2, . . . converges in probability to c ∈ R (notation: Xn
n→∞−−−−→

P
c) if

∀ ε > 0 lim
n→∞

P(|Xn − c| > ε) = 0

10



Definition Consistent and unbiased estimators

Let X1, . . . , Xn be a random sample from a pmf/pdf f(x) with parameter θ.
Assume Yn is a statistic associated to X1, . . . , Xn.
We say Yn is an unbiased estimator for θ if E(Y ) = θ
We say Yn is a consistent estimator for θ if Yn converges to θ in probability as n → ∞

Theorem Weak law of large numbers

Let X1, X2, . . . be independent and identically distributed random variables with E(Xi) = µ and
Var(Xi) = σ2 ≤ ∞. Then Xn is a consistent estimator for µ.

Theorem Markov inequality

Let a > 0 and Y be any non-negative random variable. Then, P(Y ≥ a) ≤ E[Y ]

a

Theorem Chebyschev’s inequality

If X is any random variable and a > 0 then P(|X − E[X]| ≥ a) ≤ Var(X)

a2

6.2 Central limit theorem

Definition Convergence in distribution

A sequence of r.v. X1, X2, . . . converges in distribution to X (notation: Xn
n→∞−−−−→
(d)

X) if

lim
n→∞

FXn
(x) = FX(x) for every x ∈ R at which FX is continuous

Lemma

If X continuous and Xn
n→∞−−−−→
(d)

X, then P(Xn = x)
n→∞−−−−→ 0 ∀x ∈ R

Theorem

If X continuous and Xn
n→∞−−−−→
(d)

X, then for every interval I ⊂ R, lim
n→∞

P(Xn ∈ I) = P(X ∈ I)

Theorem Central limit theorem

Let X1, X2, . . . i.i.d. with mean µ and variance σ2 (both finite). Then,

√
n
Xn − µ

σ

n→∞−−−−→
(d)

Z where Z ∼ N (0, 1).

Theorem

Assume that X1, X2, . . . and X are such that lim
n→∞

MXn
(t) = MX(t) for all t in a neighborhood of 0.

Then Xn
n→∞−−−−→
(d)

X.
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7 Random walks

Definition Random walk

Let Xt denote the step a particle makes at time t.

Then X1, X2, . . . are i.i.d. with

{
+1 with probability p

−1 with probability 1− p

The position at time t will be St =
t∑

s=1
Xs. If p = 1

2 , then we have a symmetric random walk.

Expectation and variance of random walks

EXi = 2p− 1 VarXi = 4p(1− p) ESt = t(2p− 1) VarSt = t · 4p(1− p)

Theorem

P(The random walk will revisit the origin) = P(∃t > 0 : St = 0) =


1 if p = 1

2

2(1− p) if p > 1
2

2p if p < 1
2

Definition Gambler’s ruin

The gambler’s ruin is similar to a random walk,
but the gambler starts at i¤ and ends at 0¤ (/) or a target N¤ (,)

Lemma

In the gambler’s ruin, the probability that the gambler keeps playing indefinitely,
without ever reaching 0¤ or N¤ , equals zero.

Theorem

P(the walker visits the origin infinitely many times) =

{
1 if p = 1

2

0 otherwise

8 Bivariate normal distribution

Definition Bivariate normal distribution

A random vector (X,Y ) is said to follow a bivariate normal distribution N (µX , µY , σ
2
X , σ2

Y , ρ)
with parameters µX ∈ R, µY ∈ R, σ2

X > 0, σ2
Y > 0 and ρ ∈ (−1, 1) if

fX,Y (x, y) =
1

2πσXσY

√
1− ρ2

exp

{
− 1

2(1− ρ2)

((
x− µX

σX

)2

+

(
y − µY

σY

)2

− 2ρ
x− µX

σX

y − µY

σY

)}

Lemma Linear combination

If Z1 ∼ N (0, 1) and Z2 ∼ N are independent, and U = σ1Z1 + µ1, V = ρσ2Z1 +
√
1− ρ2σ2Z2 + µ2,

then (U, V ) ∼ N (µ1, µ2, σ
2
1 , σ

2
2 , ρ)

Theorem

If (X,Y ) ∼ N (µX , µY , σ
2
X , σ2

Y , ρ), then X ∼ N (µX , σX) Y ∼ N (µY , σY ) ρX,Y = ρ

Corollary

If (X,Y ) ∼ N (µX , µY , σ
2
X , σ2

Y , ρ), then

aX + bY ∼ N (aµX + bµY , a
2σ2

X + b2σ2
Y + 2abρσXσY )
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