

Probability Theory Notes (2023/2024)

Griffin Reimerink

Contents

1	Combinatorics	2
2	Probability	2
2.1	Probability spaces	2
2.2	Events' relations	3
3	Random variables	3
3.1	Probability mass and density functions	4
3.2	Functions of random variables	4
3.3	Expectation	4
3.4	Variance	5
3.5	Classical distributions	5
4	Random vectors	6
4.1	Joint and marginal distributions	6
4.2	Conditional distribution	7
4.3	Transformation of vectors	8
4.4	Covariance and correlation	9
5	Moment generating function	9
6	Statistics	10
6.1	Law of large numbers	10
6.2	Central limit theorem	11
7	Random walks	12
8	Bivariate normal distribution	12

1 Combinatorics

Definition Falling factorial, binomial coefficient

$$(n)_k = \frac{n!}{(n-k)!} \quad \binom{n}{k} = \frac{n!}{(n-k)! \cdot k!} = \binom{n}{n-k}$$

When the cardinality of a set is difficult to compute, a bijection can help.

Theorem Inclusion-exclusion formula

$$\left| \bigcup_{i=1}^n X_i \right| = \sum_{1 \leq i_1 \leq n} |x_i| - \sum_{1 \leq i_1 < i_2 \leq n} |X_{i_1} \cap X_{i_2}| + \dots + (-1)^{n+1} \sum_{1 \leq i_1 < i_2 < \dots < n} |X_{i_1} \cap X_{i_2} \cap \dots \cap X_{i_n}|$$

2 Probability

2.1 Probability spaces

Definition Sample space

A **sample space** is a set Ω .

Any element $\omega \in \Omega$ is called an **outcome**. Any subset $A \subset \Omega$ is called an **event**.

Definition Probability space

A **probability space** is a triple $(\Omega, \mathcal{A}, \mathbb{P})$:

- Ω is a sample space
- \mathcal{A} is a collection of events: $\begin{cases} \text{the set of all subsets of } \Omega \text{ if } \Omega \text{ is countable} \\ \text{a certain set of subsets of } \Omega \text{ if } \Omega \text{ is uncountable} \end{cases}$
- \mathbb{P} is a probability function $\mathbb{P} : \mathcal{A} \rightarrow [0, 1]$ satisfying:
 - $\mathbb{P}(\Omega) = 1$
 - $\mathbb{P}(\bigcup_{i \geq 1} A_i) = \sum_{i \geq 1} \mathbb{P}(A_i)$ for any pairwise disjoint $A_1, A_2, A_3 \dots$

Theorem

Let $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ and $p_1, p_2, \dots, p_n \geq 0$ with $\sum p_i = 1$.

For any $A \subset \Omega$ define $\mathbb{P}(A) = \sum_{i: \omega_i \in A} p_i$. Then \mathbb{P} is a probability function on Ω .

Theorem Properties of probabilities

1. $\mathbb{P}(\emptyset) = 0$
2. If B_1, B_2, \dots, B_n are pairwise disjoint, then $\mathbb{P}(\bigcup_{i \leq n} B_i) = \sum_{i \leq n} \mathbb{P}(B_i)$
3. $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$
4. $0 \leq \mathbb{P}(A) \leq 1 \quad \forall A \in \mathcal{A}$
5. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$
6. if $A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$

Theorem σ -sub-additivity

For any collection of events A_1, A_2, \dots, A_n , we have $\mathbb{P}(\bigcup_{i \leq n} B_i) \leq \sum_{i \leq n} \mathbb{P}(B_i)$

Theorem Uniform probability of finite sample space

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with $|\Omega| < \infty$.

If all outcomes $\omega \in \Omega$ have the same probability, then $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$

2.2 Events' relations

Definition Probability of A given B

$$\mathbb{P}(A | B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{|A \cap B|}{|B|}$$

Theorem Law of total probabilities

Let $B \in \mathcal{A}$ with $\mathbb{P}(B) > 0$. Let A_1, A_2, \dots be a partition of \mathcal{A} . Then

$$\mathbb{P}(B) = \sum_{i \in \mathbb{N}} \mathbb{P}(B | A_i) \cdot \mathbb{P}(A_i)$$

Theorem Bayes' formula

Let $B \in \mathcal{A}$ with $\mathbb{P}(B) > 0$. Let A_1, A_2, \dots be a partition of \mathcal{A} . Then

$$\mathbb{P}(A_i | B) = \frac{\mathbb{P}(B | A_i) \cdot \mathbb{P}(A_i)}{\sum_{i \in \mathbb{N}} (\mathbb{P}(B | A_i) \mathbb{P}(A_i))}$$

Definition Independence

- Events A and B are **independent** if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$
- Events A_1, A_2, \dots, A_n are **pairwise independent** if $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j) \quad \forall i \neq j$
- Events A_1, A_2, \dots, A_n are **mutually independent** if $\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \mathbb{P}(A_{i_1}) \cdot \dots \cdot \mathbb{P}(A_{i_k})$ for any subcollection $A_{i_1}, A_{i_2}, \dots, A_{i_k}$

Mutual independence implies pairwise independence.

3 Random variables

i.i.d stands for "Independent and identically distributed random variables"

Definition Random variable

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. A **random variable** is a function $X : \Omega \rightarrow \mathbb{R}$. The **distribution** of a random variable X is the function $A \subset \mathbb{R} \rightarrow \mathbb{P}(X \in A)$, where $\mathbb{P}(X \in A) = \mathbb{P}(\{\omega \in \Omega : x(\omega) \in A\})$

Definition Cumulative distribution function (cdf)

The **cdf** of a random variable X is the function $F_X : \mathbb{R} \rightarrow [0, 1]$ given by $F_X(x) = \mathbb{P}(X \leq x)$

Lemma

$$\mathbb{P}(X = x) = F_x(x) - \lim_{y \nearrow x} F_X(y)$$

Theorem

F_x is nondecreasing, $\lim_{x \rightarrow -\infty} F_X(x) = 0$, and $\lim_{x \rightarrow \infty} F_X(x) = 1$

Definition Discrete and continuous variables

A random variable is **discrete** if it takes finitely or countably many values. (F_X is piecewise constant)
A random variable is **continuous** if its cdf is continuous.

Definition Identically distributed variables

X and Y are **identically distributed** if they have the same distribution.

3.1 Probability mass and density functions

Definition Probability mass function (pmf)

The **pmf** of a discrete random variable X is given by $f_X(x) = \mathbb{P}(X = x)$

Definition Probability density function (pdf)

The **pdf** of a continuous random variable X is a function $f_X : \mathbb{R} \rightarrow [0, \infty)$ that satisfies

$$F_x(x) = \int_{-\infty}^x f_X(y) dy \quad \forall x \in \mathbb{R}$$

Definition Absolute continuity

A random variable is **absolutely continuous** if it is continuous and has a probability density function.

Notation

$$X \sim F_X \text{ means } X \text{ has cdf } = F_X \quad X \sim f_X \text{ means } \begin{cases} X \text{ has pmf } = f_X \text{ if } X \text{ is discrete} \\ X \text{ has pdf } = f_X \text{ if } X \text{ is continuous} \end{cases}$$

3.2 Functions of random variables

Theorem

1. If $Y = g(X)$ and g is strictly increasing, then $F_Y(y) = F_X(g^{-1}(y))$
2. If $Y = g(X)$, g is strictly decreasing and X is continuous, then $F_Y(y) = 1 - F_X(g^{-1}(y))$

Lemma

Assume X is discrete. Then, Y is also discrete and $f_Y(y) = \sum_{x \in g^{-1}(y)} f_x(x)$.
If g is injective, then $f_Y(y) = f_X(g^{-1}(y))$

Theorem

Assume X has pdf f_X and $Y = g(X)$ with g differentiable and strictly increasing or strictly decreasing. Then,

$$f_Y(y) = f_X(g^{-1}(y)) \cdot \left| \frac{d}{dy} g^{-1}(y) \right|$$

3.3 Expectation

Definition Expected value

Let X be a random variable.

The **expected value** (or **mean** or **expectation**) of X is:

$$\mathbb{E}(X) = \begin{cases} \sum_x x \cdot f_x(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} x \cdot f_x(x) dx & \text{if } X \text{ is absolutely continuous} \end{cases}$$

Theorem Linearity of expectation

Let X_1, X_2, \dots, X_n be random variables. Let $a_1, a_2, \dots, a_n \in \mathbb{R}$.

Then $\mathbb{E}[a_1 X_1 + a_2 X_2 + \dots + a_n X_n] = a_1 \mathbb{E}X_1 + a_2 \mathbb{E}X_2 + \dots + a_n \mathbb{E}X_n$

Theorem

Let X be a discrete random variable and $g : \mathbb{R} \rightarrow \mathbb{R}$. Then $\mathbb{E}(g(X)) = \sum_x g(x) f_X(x)$.

Theorem Properties of expected value of functions

Let $X, Y : \Omega \rightarrow \mathbb{R}$ be random variables, $a, b, c \in \mathbb{R}$ and $g_1, g_2 : \mathbb{R} \rightarrow \mathbb{R}$ s.t. $\mathbb{E}(g_1(X)), \mathbb{E}(g_2(X)), \mathbb{E}(g_2(Y))$ are defined. Then

Linearity:

$$1. \mathbb{E}[ag_1(X) + bg_2(Y) + c] = a\mathbb{E}[g_1(X)] + b\mathbb{E}[g_2(Y)] + c$$

Monotonicity:

2. If $g_1 \geq 0$, then $\mathbb{E}[g_1(X)] \geq 0$
3. If $g_1 \geq g_2$, then $\mathbb{E}[g_1(X)] \geq \mathbb{E}[g_2(X)]$
4. If $a \leq g_1 \leq b$, then $a \leq \mathbb{E}[g_1(X)] \leq b$

Theorem

1. If X is a discrete random variable taking values in $\{0, 1, \dots\}$, then

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} (1 - F_X(n))$$

2. If X is a continuous nonnegative random variable, then

$$\mathbb{E}(X) = \int_0^{\infty} (1 - F_X(n)) \, dx$$

3.4 Variance

Definition Variance and standard deviation

n-th moment: $\mathbb{E}(X)^n$

Variance: $\text{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$

n-th central moment: $\mathbb{E}(X - \mathbb{E}(X))^n$

Standard deviation: $\sigma = \sqrt{\text{Var}(X)}$

Theorem

$$\text{Var}(aX + b) = a^2 \text{Var } X$$

3.5 Classical distributions

Definition Classical discrete distributions

Discrete uniform distribution:	$X \sim \text{Unif}(a, b)$ if $f_x(x) = \frac{1}{b-a+1}$	$a, b \in \mathbb{Z}, a < b$
Bernoulli distribution:	$X \sim \text{Ber}(p)$ if $f_x(1) = p$ and $f_x(0) = 1 - p$	$p \in [0, 1]$
Binomial distribution:	$X \sim \text{Bin}(n, p)$ if $f_x(x) = \binom{n}{x} p^x (1-p)^{n-x}$	$x = 0, 1, \dots, n$
Geometric distribution:	$X \sim \text{Geo}(p)$ if $f_x(x) = (1-p)^{x-1} p$	$x = 1, 2, \dots$
Poisson distribution:	$X \sim \text{Poi}(\lambda)$ if $f_x(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$\lambda > 0, x = 0, 1, 2, \dots$

For the binomial distribution, we perform n Bernoulli trials with probability p of success, where X is the number of successes. For the geometric distribution, we perform Bernoulli trials with probability p of success until the first success is obtained, where X is the number of trials.

Expectation and variance of classical discrete distributions

Discrete uniform distribution	$\mathbb{E}(X) = \frac{a+b}{2}$	$\text{Var}(X) = \frac{(b-a+1)^2 - 1}{12}$
Bernoulli distribution	$\mathbb{E}(X) = p$	$\text{Var}(X) = p(1-p)$
Binomial distribution	$\mathbb{E}(X) = np$	$\text{Var}(X) = np(1-p)$
Geometric distribution	$\mathbb{E}(X) = \frac{1}{p}$	$\text{Var}(X) = \frac{1-p}{p^2}$
Poisson distribution	$\mathbb{E}(X) = \lambda$	$\text{Var}(X) = \lambda$

Theorem Poisson limit theorem

Assume $(p_n)_{n \geq 1}$ is a sequence such that $p_n \in [0, 1]$ for each n and $\lim_{n \rightarrow \infty} n \cdot p_n = \lambda > 0$. Then for each $k \geq 1$,

$$\lim_{n \rightarrow \infty} \underbrace{\binom{n}{k} (p_n)^k (1 - p_n)^{n-k}}_{f_X(k) \text{ for } X \sim \text{Bin}(n, p_n)} = \underbrace{\frac{\lambda^k}{k!} e^{-\lambda}}_{f_X(k) \text{ for } X \sim \text{Poi}(\lambda)}$$

Definition Gamma function

$$\Gamma(a) \int_0^\infty t^{a-1} \cdot e^{-t} dt$$

Properties of the gamma function

- $\Gamma(a+1) = a\Gamma(a)$ for any $a > 0$.
- $\Gamma(n) = (n-1)!$ for any positive integer n .

Definition Classical continuous distributions

Uniform distribution: $X \sim \text{ContUnif}(a, b)$ if $f_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in (a, b) \\ 0 & \text{otherwise.} \end{cases} \quad a < b$

Exponential distribution: $X \sim \text{Exp}(\lambda)$ if $f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases} \quad \lambda > 0$

Gamma distribution: $X \sim \text{Gamma}(\alpha, \beta)$ if $f_X(x) = \begin{cases} \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases} \quad \alpha, \beta > 0$

Normal distribution: $X \sim \mathcal{N}(\mu, \sigma^2)$ if $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad \mu \in \mathbb{R}, \sigma > 0$

We call $\mathcal{N}(0, 1)$ the standard **normal distribution**.

Expectation and variance of classical continuous distributions

Uniform distribution $\mathbb{E}(X) = \frac{b+a}{2} \quad \text{Var}(X) = \frac{(b-a)^2}{12}$

Exponential distribution $\mathbb{E}(X) = \frac{1}{\lambda} \quad \text{Var}(X) = \frac{1}{\lambda^2}$

Gamma distribution $\mathbb{E}(X) = \frac{\alpha}{\beta} \quad \text{Var}(X) = \frac{\alpha}{\beta^2}$

Normal distribution $\mathbb{E}(X) = \mu \quad \text{Var}(X) = \sigma^2$

Theorem

If $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y = aX + b$ with $a \neq 0$, then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$

If $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Z = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$

4 Random vectors

Definition Random vector

Let $n \in \mathbb{N}$. An n -dimensional **random vector** is a function from a sample space Ω into \mathbb{R}^n .

A random variable is a 1-dimensional random vector.

The **distribution** of a random vector is the function $A \mapsto \mathbb{P}((X_1, X_2, \dots, X_n) \in A)$

4.1 Joint and marginal distributions

Definition Joint cumulative distribution function

The **joint cdf** of (X_1, \dots, X_n) is $F_{X_1, \dots, X_n}(x_1, \dots, x_n) = \mathbb{P}(X_1 \leq x_1, \dots, X_n \leq x_n)$

Definition Discrete random vectors

A random vector (X_1, \dots, X_n) is **discrete** if it takes countably many values.

The **joint pmf** of (X_1, \dots, X_n) is $f_{X_1, \dots, X_n}(x_1, \dots, x_n) = \mathbb{P}(X_1 = x_1, \dots, X_n = x_n)$

Definition Continuous random vectors

A random vector (X_1, \dots, X_n) is **continuous** if there exists a function $f_{X_1, \dots, X_n} : \mathbb{R}^n \rightarrow [0, \infty)$ such that

$$\mathbb{P}((X_1, X_2, \dots, X_n) \in A) = \int \cdots \int_A f_{X_1, \dots, X_n}(x_1, \dots, x_n) dx_1 \dots dx_n$$

This function is the **joint pdf** of (X_1, \dots, X_n) .

Definition Marginals

Let (X_1, \dots, X_n) be a random vector with joint pdf f_{X_1, \dots, X_n} .

The pmf's f_{X_1}, \dots, f_{X_n} of the (univariate) random variables X_1, \dots, X_n are called the **marginal pmf's**. We similarly define **marginal pdf's** for continuous random vectors.

Construction of marginals from a joint pmf

$$f_X(x) = \sum_y f_{X,Y}(x, y) \quad f_Y(y) = \sum_x f_{X,Y}(x, y)$$

Construction of marginals from a joint pdf

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy \quad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dx$$

Theorem Expectation of random vectors

Let $g : \mathbb{R}^n \rightarrow \mathbb{R}$.

$$\mathbb{E}[g(x_1, \dots, x_n)] = \begin{cases} \sum_{x_1} \cdots \sum_{x_n} g(x_1, \dots, x_n) f_{X_1, \dots, X_n}(x_1, \dots, x_n) & \text{(Discrete)} \\ \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, \dots, x_n) f_{X_1, \dots, X_n}(x_1, \dots, x_n) dx_1 \dots dx_n & \text{(Continuous)} \end{cases}$$

Theorem

1. If X and Y are random variables and $a, b \in \mathbb{R}$, then $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$
2. If $\mathbb{P}(X \geq Y) = 1$, then $\mathbb{E}(X) \geq \mathbb{E}(Y)$.

4.2 Conditional distribution

Definition Conditional pmf

Let (X, Y) be a discrete random vector with joint pmf $f_{X,Y}$ and marginals f_X and f_Y . The conditional pmf of X given Y is the function

$$f_{X|Y}(x | y) = \mathbb{P}(X = x | Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$$

defined for all x and for all y such that $f_Y(y) > 0$.

Definition Conditional pdf

Let (X, Y) be a continuous random vector with joint density $f_{X,Y}(x, y)$. The conditional probability density function of X given Y is

$$f_{X|Y}(x | y) = \frac{f_{X,Y}(x, y)}{f_Y(y)}$$

defined for all x and for all y such that $f_Y(y) > 0$.

Definition Independent random variables

Random variables X_1, \dots, X_n (defined on the same probability space) are independent if

$$\mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n) = P(X_1 \in A_1) \dots \mathbb{P}(X_n \in A_n) \text{ for all } A_1, \dots, A_n \subset \mathbb{R}.$$

Lemma

Random variables X_1, \dots, X_n are independent if and only if

$$f_{X_1, \dots, X_n}(x_1, \dots, x_n) = f_{X_1}(x_1) \dots f_{X_n}(x_n)$$

Lemma

Assume that there exist non-negative functions g, h such that we can write $f_{X,Y}(x, y) = g(x) \cdot h(y)$. Then X and Y are independent and

$$f_X(x) = \frac{g(x)}{\int_{-\infty}^{\infty} g(s) \, ds} \quad f_Y(y) = \frac{h(y)}{\int_{-\infty}^{\infty} h(t) \, dt}$$

Definition Conditional expectation and variance

Let X, Y be random variables and E be an event with $\mathbb{P}(E) > 0$.

$$\mathbb{E}[X \mid E] = \frac{\mathbb{E}[X \mathbb{1}_E]}{\mathbb{P}(E)} \quad \text{Var}[X \mid E] = \mathbb{E}[X^2 \mid E] - (\mathbb{E}[X \mid E]^2)$$

Theorem

If X and Y are independent, then for any g, h we have

$$\mathbb{E}(g(X)h(Y)) = \mathbb{E}(g(X))\mathbb{E}(h(Y)) \quad E(XY) = E(X)E(Y) \quad \text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$$

4.3 Transformation of vectors

Theorem

Assume X, Y are independent. Let $U = g_1(X)$ and $V = g_2(Y)$ with $g_1, g_2 : \mathbb{R} \rightarrow \mathbb{R}$. Then U and V are independent.

Lemma

If (X_1, X_2) is discrete and $(Y_1, Y_2) = g(X_1, X_2)$, then $f_{Y_1, Y_2}(y_1, y_2) = \sum_{(x_1, x_2) \in g^{-1}(y_1, y_2)} f_{X_1, X_2}(x_1, x_2)$. If g is injective, then $f_Y(y) = f_X(g^{-1}(y))$

Theorem

Let (X_1, X_2) be a continuous random vector and let $g : D \rightarrow \mathbb{R}$ injective and differentiable, where

$$D := \{(x_1, x_2) \in \mathbb{R}^2 : f_{X_1, X_2}(x_1, x_2) \neq 0\} \quad R = g(D) \subset \mathbb{R}^2.$$

If $h = g^{-1}$ and $(Y_1, Y_2) = g(X_1, X_2)$, then

$$f_{Y_1, Y_2}(y_1, y_2) = \begin{cases} f_{X_1, X_2}(g^{-1}(y_1, y_2)) \cdot \left| \frac{\partial(h_1, h_2)}{\partial(y_1, y_2)} \right| & \text{if } (y_1, y_2) \in R \\ 0 & \text{otherwise} \end{cases}$$

This theorem can be expanded to higher dimensions.

Definition Convolution

The distribution of $X + Y$ is called the **convolution** of (the distributions of) X and Y .

Theorem Convolution formula

Suppose that X and Y are independent random variables.

1. If X and Y are discrete, then $Z = X + Y$ is discrete and its pmf is

$$f_{X+Y}(z) = \sum_x f_X(x) f_Y(z-x)$$

2. If X and Y are continuous, then $Z = X + Y$ is continuous and its pdf is

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

4.4 Covariance and correlation

Definition Covariance and correlation

Let X, Y be random variables with $\mathbb{E}[X] = \mu_X$ and $\mathbb{E}[Y] = \mu_Y$.

- **Covariance** between X and Y : $\text{Cov}(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$
- **Correlation** between X and Y : $\rho_{X,Y} = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$

If $\text{Cov}(X, Y) = 0$ then X, Y are **uncorrelated**.

Lemma

For any random variable X , $\mathbb{P}(X = 0) = 1$ if and only if $\mathbb{E}[X^2] = 0$.

Theorem Properties of covariance

1. $\text{Cov}(X, Y) = \text{Cov}(Y, X)$
2. $\text{Cov}(X, X) = \text{Var}(X)$
3. $\text{Cov}(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$
4. If X, Y are independent, they are uncorrelated. (the converse is not true!)
5. $\text{Cov}(aX + bY, Z) = a\text{Cov}(X, Z) + b\text{Cov}(Y, Z)$
6. If either of X or Y is constant, then $\text{Cov}(X, Y) = 0$.
7. $|\text{Cov}(X, Y)| \leq \sigma_X \sigma_Y$ (and $\rho_{X,Y} \in [-1, 1]$)
8. Assume $\sigma_X \sigma_Y > 0$. Then,
 $\text{Cov}(X, Y) = \sigma_X \sigma_Y$ (and $\rho_{X,Y} = 1$) if and only if $X = aY + b$ for some $a > 0, b \in \mathbb{R}$
 $\text{Cov}(X, Y) = -\sigma_X \sigma_Y$ (and $\rho_{X,Y} = -1$) if and only if $X = aY + b$ for some $a < 0, b \in \mathbb{R}$

Theorem

- $\text{Cov}\left(\sum_{i \leq m} a_i X_i, \sum_{j \leq n} b_j Y_j\right) = \sum_{i \leq m} \sum_{j \leq n} a_i b_j \text{Cov}(X_i, Y_j)$
- $\text{Var}\left(\sum_{i \leq n} X_i\right) = \sum_{i \leq n} (\text{Var}(X_i)) + 2 \sum_{i \leq i < j \leq n} \text{Cov}(X_i, X_j)$
- If X_1, \dots, X_n are independent, then $\text{Var}\left(\sum_{i \leq n} X_i\right) = \sum_{i \leq n} \text{Var}(X_i)$

5 Moment generating function

Definition Moment generating function

The **mgf** of a random variable is the function $M_X(t) = \mathbb{E}[e^{tX}] = \begin{cases} \sum_x e^{tx} f_X(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} e^{tx} f_X(x) dx & \text{if } X \text{ is continuous} \end{cases}$

Theorem

$$\mathbb{E}(X^n) = \frac{d^n}{dt^n} M_X(t) \Big|_{t=0}$$

Theorem

$$M_{aX+b}(t) = e^{bt} M_X(at)$$

Theorem

If X, Y are such that $M_X(t) = M_Y(t)$ for all t in some neighborhood of 0, then $F_X = F_Y$

Theorem

If X, Y are independent, then $M_{X+Y}(t) = M_X(t)M_Y(t)$ for all $T \geq 0$

Theorem

Let $X \sim \mathcal{N}(\mu_X \sigma_X^2)$, $Y \sim \mathcal{N}(\mu_Y \sigma_Y^2)$ be independent. Let $a, b, c \in \mathbb{R}$. Then $aX + bY + c \sim \mathcal{N}(a\mu_X + b\mu_Y + c, a^2\sigma_X^2 + b^2\sigma_Y^2)$

Definition Joint moment generating function

The **joint mgf** of a random vector X_1, \dots, X_n is the function $M_{X_1, \dots, X_n}(t_1, \dots, t_n) = \mathbb{E}(e^{t_1 X_1 + \dots + t_n X_n})$

6 Statistics

Definition Random sample, parameter, statistic

A **random sample** of size n is simply a sequence X_1, \dots, X_n of independent random variables, all with the same pdf or pmf $f(x)$. We thus have $f_{X_1, \dots, X_n}(x_1, \dots, x_n) = \prod_{i \leq n} f(x_i)$

A **parameter** is a constant that defines the pdf/pmf.

A **statistic** is a function of a random sample, $Y = T(X_1, \dots, X_n)$, $T : \mathbb{R}^n \rightarrow \mathbb{R}$

Definition Sample mean and variance

$$\bar{X}_n = \frac{X_1 + \dots + X_n}{n} \quad S_n^2 = \frac{1}{n-1} \sum_{i \leq n} (X_i - \bar{X}_n)^2$$

Lemma

$$S_n^2 = \frac{1}{n-1} \sum_{i \leq n} X_i^2 - \frac{n}{n-1} \bar{X}_n^2$$

Theorem

Let X_1, \dots, X_n be independent and identically distributed with mean μ and variance σ^2 . Then,

1. $\mathbb{E}(\bar{X}_n) = \mu$
2. $\text{Var}(\bar{X}_n) = \frac{\text{Var } X_1}{n}$
3. $\mathbb{E}(S_n^2) = \sigma^2$

6.1 Law of large numbers

Definition Convergence in probability

A sequence of r.v. X_1, X_2, \dots **converges in probability** to $c \in \mathbb{R}$ (notation: $X_n \xrightarrow[\mathbb{P}]{n \rightarrow \infty} c$) if

$$\forall \varepsilon > 0 \quad \lim_{n \rightarrow \infty} \mathbb{P}(|X_n - c| > \varepsilon) = 0$$

Definition Consistent and unbiased estimators

Let X_1, \dots, X_n be a random sample from a pmf/pdf $f(x)$ with parameter θ .

Assume Y_n is a statistic associated to X_1, \dots, X_n .

We say Y_n is an **unbiased estimator** for θ if $\mathbb{E}(Y) = \theta$

We say Y_n is a **consistent estimator** for θ if Y_n converges to θ in probability as $n \rightarrow \infty$

Theorem Weak law of large numbers

Let X_1, X_2, \dots be independent and identically distributed random variables with $\mathbb{E}(X_i) = \mu$ and $\text{Var}(X_i) = \sigma^2 \leq \infty$. Then \bar{X}_n is a consistent estimator for μ .

Theorem Markov inequality

Let $a > 0$ and Y be any non-negative random variable. Then, $\mathbb{P}(Y \geq a) \leq \frac{\mathbb{E}[Y]}{a}$

Theorem Chebyshev's inequality

If X is any random variable and $a > 0$ then $\mathbb{P}(|X - \mathbb{E}[X]| \geq a) \leq \frac{\text{Var}(X)}{a^2}$

6.2 Central limit theorem

Definition Convergence in distribution

A sequence of r.v. X_1, X_2, \dots **converges in distribution** to X (notation: $X_n \xrightarrow[n \rightarrow \infty]{(d)} X$) if

$$\lim_{n \rightarrow \infty} F_{X_n}(x) = F_X(x) \text{ for every } x \in \mathbb{R} \text{ at which } F_X \text{ is continuous}$$

Lemma

If X continuous and $X_n \xrightarrow[n \rightarrow \infty]{(d)} X$, then $\mathbb{P}(X_n = x) \xrightarrow[n \rightarrow \infty]{(d)} 0 \quad \forall x \in \mathbb{R}$

Theorem

If X continuous and $X_n \xrightarrow[n \rightarrow \infty]{(d)} X$, then for every interval $I \subset \mathbb{R}$, $\lim_{n \rightarrow \infty} \mathbb{P}(X_n \in I) = \mathbb{P}(X \in I)$

Theorem Central limit theorem

Let X_1, X_2, \dots i.i.d. with mean μ and variance σ^2 (both finite). Then,

$$\sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \xrightarrow[n \rightarrow \infty]{(d)} Z \text{ where } Z \sim \mathcal{N}(0, 1).$$

Theorem

Assume that X_1, X_2, \dots and X are such that $\lim_{n \rightarrow \infty} M_{X_n}(t) = M_X(t)$ for all t in a neighborhood of 0.

Then $X_n \xrightarrow[n \rightarrow \infty]{(d)} X$.

7 Random walks

Definition Random walk

Let X_t denote the step a particle makes at time t .

Then X_1, X_2, \dots are i.i.d. with
$$\begin{cases} +1 & \text{with probability } p \\ -1 & \text{with probability } 1-p \end{cases}$$

The position at time t will be $S_t = \sum_{s=1}^t X_s$. If $p = \frac{1}{2}$, then we have a **symmetric random walk**.

Expectation and variance of random walks

$$\mathbb{E}X_i = 2p - 1 \quad \text{Var } X_i = 4p(1-p) \quad \mathbb{E}S_t = t(2p - 1) \quad \text{Var } S_t = t \cdot 4p(1-p)$$

Theorem

$$\mathbb{P}(\text{The random walk will revisit the origin}) = \mathbb{P}(\exists t > 0 : S_t = 0) = \begin{cases} 1 & \text{if } p = \frac{1}{2} \\ 2(1-p) & \text{if } p > \frac{1}{2} \\ 2p & \text{if } p < \frac{1}{2} \end{cases}$$

Definition Gambler's ruin

The **gambler's ruin** is similar to a random walk, but the gambler starts at $i\mathbb{E}$ and ends at $0\mathbb{E}$ (⊖) or a target $N\mathbb{E}$ (⊕)

Lemma

In the gambler's ruin, the probability that the gambler keeps playing indefinitely, without ever reaching $0\mathbb{E}$ or $N\mathbb{E}$, equals zero.

Theorem

$$\mathbb{P}(\text{the walker visits the origin infinitely many times}) = \begin{cases} 1 & \text{if } p = \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

8 Bivariate normal distribution

Definition Bivariate normal distribution

A random vector (X, Y) is said to follow a **bivariate normal distribution** $\mathcal{N}(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$ with parameters $\mu_X \in \mathbb{R}, \mu_Y \in \mathbb{R}, \sigma_X^2 > 0, \sigma_Y^2 > 0$ and $\rho \in (-1, 1)$ if

$$f_{X,Y}(x, y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left(\left(\frac{x-\mu_X}{\sigma_X}\right)^2 + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 - 2\rho\frac{x-\mu_X}{\sigma_X}\frac{y-\mu_Y}{\sigma_Y} \right)\right\}$$

Lemma Linear combination

If $Z_1 \sim \mathcal{N}(0, 1)$ and $Z_2 \sim \mathcal{N}$ are independent, and $U = \sigma_1 Z_1 + \mu_1, V = \rho\sigma_2 Z_1 + \sqrt{1-\rho^2}\sigma_2 Z_2 + \mu_2$, then $(U, V) \sim \mathcal{N}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$

Theorem

If $(X, Y) \sim \mathcal{N}(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$, then $X \sim \mathcal{N}(\mu_X, \sigma_X)$ $Y \sim \mathcal{N}(\mu_Y, \sigma_Y)$ $\rho_{X,Y} = \rho$

Corollary

If $(X, Y) \sim \mathcal{N}(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$, then

$$aX + bY \sim \mathcal{N}(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\rho\sigma_X\sigma_Y)$$